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Abstract

The Plicker embedding gives a bijective correspondence between the
d-planes of a projective space P™ and the points of the Grassman Man-

ifold in the higher dimensional space P¥, where N = (;‘_"'_'11) —1. The

Grassman Manifold can be defined as the set of points in P¥ whose ho-
mogeneous coordinates satisfy certain quadratic relations, those relations
being generated by sequences in {0,...n}. Here we present a minimal
set of generating sequences for the quadratic relations and subsequently
investigate the linear independence of said relations.

1 Introduction

When considering d-planes in a projective space P™ it is often useful to consider

the Grassman Manifold in the higher dimensional space PV, where N = (Z _I'i_' i)

—1. It is therefore useful to consider the quadratic relations which define the
Grassman Manifold.

We begin with a brief discussion of projective space, d-planes in projective
space, and the Pliicker coordinates of a d-plane in projective space. We then see
that the Pliicker coordinates define a point in P%V, that each such point satisfies
the aforementioned quadratic relations, and that all such points comprise the
Grassman Manifold.

To define a projective space P?, we consider the set C?T1 = C*+1 — {0} of
nonzero points in complex (n + 1) space. We define an equivalence relation «
on C?*1 by writing (20,...,2n) » (Wo,...,wn) if (20,...,2n) = ¢(wo,...,wy) for some
¢ # 0. Then P" is the set C?t1/ . A point z in P" is denoted [zg : ... : zy].
The numbers zy,...,z, are called the homogeneous coordinates of z.

A d-plane in P™ consists of all one-dimensional subspaces in the span of (d+1)
linearly independent vectors in C?*! (a.k.a. points in P"). Alternatively, it is
the set of points z = [z : ... : z,] in P™ whose coordinates satisfy (n — d)
independent equations E?:o agjz; = 0, where 1 < 8 < (n—d).

Given a d-plane L in P", we can obtain a vector in CN*' by means of
the Pliicker embedding. That is, given (d 4+ 1) linearly independent vectors



20,...,za in C'T! which span L, we first form the (d + 1) x (n + 1) matrix
(z0)0 (20)1 -+ (20)n

Z = . We then consider the (d + 1) x (d + 1)
(za)o (za)1 -+ (za)n

submatrices of Z, which we can characterize completely by the set J = {jo...74

0 < jo < ... < jg < n} of strictly increasing sequences in {0,....n}. (Each

sequence jp,...,jq in J represents the (d+1) x (d+ 1) submatrix of 7 consisting

of the joth,...,jath columns of Z.) We order the elements of J lexicographically

and denote the determinant of the jg...jg-th submatrix by p(jo...jq). There are

n+ 1) sequences in J, and, since zg,...,zq are linearly independent, we have

d+1
plko...kg) # 0 for some kg...kq in J. Thus, (...,p(jo...ja),...) forms a vector in
CN+1. The homogeneous coordinates of [... : p(jo...jq) : ...] are known as the

Plicker coordinates of the d-plane L.

To see that the Pliicker embedding of L into C¥+! in fact defines the point
[... : p(jo...ja) : ...] in PV, we take wo,...,wq in P" which span L. We con-
struct W as we constructed Z previously, and we denote the determinant of
the jo...jg-th submatrix of W by ¢(jo...ja). By a change of basis, we see
that 7 = CW for some (d + 1) x (d + 1) matrix C' with det(C') # 0. Thus
p(jo...ja) = det(C)q(jo...ja) so that [... : p(jo...ja) : ...] is indeed a point of PV,

We next arrive at Theorem 1 in [Kl&La72]. The Plicker embedding gives a
bijective correspondence between the d-planes in P” and the points of PY whose
homogeneous coordinates satisfy the quadratic relations

d+1
Z (_1)>\p(j0~~~jd—1k>\)p(]€0...k‘)\...kd+1) =0,
A=0

where jo...ja—1 and ko...kqy1 are sequences with0 < jg, k < n and ko...a...de
denotes ky...kqp1 with ky removed.

That is, the Plicker coordinates of each d-plane in P™ satisfy the quadratic
relations, and conversely, a point [zq : ... : zx] of P? whose homogeneous coor-
dinates satisfy — as described below — the quadratic relations has the Plucker
coordinates of a unique d-plane in P”. This is how the Grassman Manifold arises
and why it is the set of points in PV whose coordinates satisfy the quadratic
relations. The Grassman Manifold (of d-planes in projective n-space) is denoted
Gan.

To see how the homogeneous coordinates of a point [z : ... : zx5] of PV can
satisfy the quadratic relations, we first note that because p is a determinant, we
have

p(jo...ja) = 0if any two of the js are equal;
p(]ojd) = _p(j0~~~jﬁ—1jﬁ+1jﬁ~~~jd) fOI' ﬁ = 0, ...,d— 1.

Thus we can write any quadratic relation so that each sequence [y...[5 in each
factor p(ly...lg) of each term p(ly...lq)p(mg...mq) is strictly increasing. If we now
represent points [zo : ... : zy] of PV using the ordered set J above in place of the
set of indices {0 < 1 < ... < N} and we identify z;, ;, with p(jo...jq) we see that



the quadratic relations express possible dependencies among the homogeneous
coordinates zg,...,zny of the points [z : ... : zn] of PN, Te. the homogeneous
coordinates of a point [zp : ... : zy] can satisfy the quadratic relations.

In what follows, we investigate the quadratic relations. We consider the
sequence pairs jo...jg—1 and kq...kqy1 which generate nontrivial quadratic rela-
tions. Evidently, there are many such pairs. Questions we answer are: How
many different quadratic relations do said pairs generate? Is there a minimal
set of these pairs that generates the quadratic relations? And are the quadratic
relations themselves independent? l.e. can we write certain quadratic relations
as linear combinations of other quadratic relations? Or is this impossible?

2 Notation and Preliminary Results

We begin with some notation. Any sequence jg,...,jm 18 written jg...jp, or ab-
breviated j. The set {jo,...,jm} is denoted J and the number of elements in J
is denoted #£J.

Given sequences j, k we define jnk,k — j, and jUk as follows:

oj Nk is the subsequence of j all of whose terms also belong to k. Note that
j Nk might be the empty sequence. Le. J N K might be §.

ok — j is the subsequence of k all of whose terms do not belong to j.

¢j U k is the sequence given by j(k —j).

We denote a quadratic relation

d+1
> (=D p(o-ja—1ka)p(ko.. Jx. kap1) = 0
A=0

by its left hand side. That is, Q = Eiio (_1)>\p(j0...jd_1k)\)p(k0...R...kd+1)
is sald to be a quadratic relation. The sequences jo,...,ja—1 and ko,...,kq41 are
said to generate ().

In addition, a quadratic relation () is assumed to be written in simplest
form. That is, terms in @ which are alike with respect to the sequences
Jo--ja—1, ko...kay1 are assumed to have been combined and/or cancelled. If
for example @ = —p(01)p(02) + p(02)p(01) then @ has no terms. (T.e. @ =0.)
On the other hand @ = p(01)p(23) — p(02)p(13) +p(03)p(12) is a fully simplified
quadratic relation even if, for example, p(01) = 0.

When @ = 0 we say that ) is trivial. When @ = &Q’ we say that Q and @’
are identical.

We proceed with some observations. Suppose jo,...,74—1 and ko,...,kq41 gen-
erate the quadratic relation (). Suppose similarly that jj,...,j;_, and kg,....k,
generate the quadratic relation . We have the following.

Lemma 1. If jy,...,74_1 are not distinct then @) is trivial

Proof.

T D) p(o- Jamrka)p(ko. Tox. kayr) = 5L 0 = 0.



Lemma 2. [If ko,...,kq41 are not distinct then @ is trivial

Proof. If three or more of the ks are the same then @ is trivial as above.
If ko = kg, where o < 3, then

T D) p(o . jae1ka)p(ko.. T kagr) =
(=1)*p(o.Gac1ka)p(ko. K. .kar1) + (=1)Pp(o..ja—1ks)p(ko.. kp.. kapr) =

(=1)*p(jo--.Ja1ka)[p(ko-.ka...kapr) + (=1)P=*p(ko.. kp...kas1)] = 0

since p(ko...a...de) = p(ko...%;...de) when f—a is odd and p(ko...a...de) =

—p(ko...%;...de) when 3 — « is even.

Remark. By virtue of Lemmas 1 and 2, we will assume from here on that any
two generating sequences j and k have, respectively, distinct terms.

Lemma 3. IfJ =J withk =k’ then Q and Q' are identical.

Proof. In this case j)...j5_; is a rearrangement of jy...jq—1. Thus we have
an integer m such that p(ji...j5_1kx) = (=1)"p(jo...ja—1kx) for the k. Hence

S (=D (b o k) p(ko Jox. . kagr) =
(=)™ S (=D po- Gae1kr)p(ko.. x..-kagr).

Lemma 4. If K = K' withj=j then Q and Q' are identical.

Proof. Here k6~~~k2l+1 can be obtained from kq...k441 using a finite number
of interchanges of the form kq...kgy1ks...kaq1, where 0 < § < d. It therefore
suffices to show that @@ remains unaltered (up to sign) by such interchanges.
Let k‘()k‘él_l_l = ko...k@+1k@...kd+1. Then

(ko okl ) = plko. T kppiks. kapr) = —p(ko.. Tox.. kapr)
when A # 3,8+ 1 and
p(kl K Klyer) = plko. epsrkp.karr) = plho- Kpp1.kapr)
when A = 3. (Similar when A = 8+ 1.) Therefore
AL (=1 P da K5 p (kb Ky Ky ) =
— EA¢0,0+1 (—1)>‘p(j0...jd_lk)\)p(ko...k‘)\...kd+1)+

(_1)ﬁp(j0~~~jd—1kﬁ+1)p(ko...k/@i_l...kd+1)—|—
(=1)P* p(jo...jaz1ks)p(ko...kp...kap1) =

— S (o jae1ka)p(ko.. Tor kag1).



Lemma 5. IfJ C K then @ s trivial

Proof. Using Lemmas 3 and 4, we can write jp...jg—1 = kg...kq—1. Then we
have

T D) p(o . jae1ka)p(ko.. T kagr) =
(=1)%p(jo...jac1ka)p(ko...ka_1kay1) + (=D p(Go...ja_1kar1 )p(ko...kq) =

(—1)dp(k0...kd)p(k0...k‘d_lk‘d_H) - (—1)dp(k0...kd_1kd+1)p(k‘o...k‘d) =0.

Remark. As with the remark following Lemmas 1 and 2, we will assume from
now on, using Lemma 5, that for any two generating sequences j and k, we have
JZ K.

Lemma 6. @ has #(K — J) terms.

Proof. Leti=jnNnk, s =#I—1. Again using Lemmas 3 and 4, we can
write jo...jg = ko...kg =1, jg+1...Ja—1 = — 1, and kg41...kg41 = k — 1. Then

1 (o jaerka)p(ko.. Jox. kayr) =
d+1 Ao /o - . . - _
EA:ﬁ+1 (—1) p(l_]@_H...jd_lk)\)p(lk@+1...k‘)\...k’d+1) =

(=1 p(ijss ~~~jd—1k’ﬁ+1)P(ikﬁ+1~~~kd+1)/+\' S
(—1)d+1p(ij@+1 ~~~jd—1kd+1)p(ikﬁ+1~~~kdkd+1)~

It follows that @ has at most (d+2)—(F+1) = (d+2)—#] = #K—#(JNK) =
#(K — J) terms.

It remains to show that each term p(ijﬁ+1...jd_lk)\)p(ikﬁ+1...R...kd+1) is
distinet for (8 4+ 1) < A < (d+1). We claim that in fact p(ijsyi1...Ja—1kr)
occurs only once in ) for each A. Since kgi1,..., kg41 are all distinct we see that
p(Ljgt1.-da—1kst1),..., pP(Ajp41..-Ja—1kqy1) are all/dis\tinct, and because jd_/l\;é
kﬁ+1a"'a ]Cd_|_1 we have that p(ij@+1...jd_1]€)\) 75 p(ik‘@_H...kd+1),...,p(ik@+1...kd+1)
for any A.

The claim follows and we are done.

Remark. A consequence of the previous lemmas, especially Lemma 6, is that
any nontrivial quadratic relation ) has three or more terms, each term with
coefficient +1. A consequence of the defining sum 1s that ¢ cannot exceed
(d + 2) terms.

We conclude our preliminary results with one last observation.

Lemma 7. If#(K—-J)=3 with JUK = J UK’ and JNK = J NK’' then
Q and Q' are identical.



Proof. TLet i = jnk. By hypothesis, #(J — I) = 1. Thus we can write
Jo-Ja—o = Jhdh_o = ko kaoo = k. k_, = 1. If ja_1 = j,_, we are done.
Otherwise, we can write jq_1 = k/_,, ka—1 = ji_,, ka =k}, and kgy1 = k2l+1~
Now calculate

d . .
S (1P D0 KPR K k) =
T (=D p(ih k) p(k. Kkl ) =

(_1)d;1p-(ij2l—1k2l—1) p(ikghy, )+
(_1d) %)(lqég—1kél)p(1kd‘—1kél+1)+
(=)™ p(ljél—lkél+1)p(lk2l—1k2l) =

(=D 'p(ika-1ja-1)p(ikakar1)+
(_1)dp(ikd—1kd)1)(ijd—1kd+1)-l—
(_1)d+1p(ikd—1kd+1)p(ijd—lkd) =

~(=1)* plijacika—1)plko.. ka1 kas1)+
—(=1)*p(ija-1ka)p(ko.. kdkdﬂl—p
(=) p(ija—rkar1)p(ko...kakapr) =

_EdH( D*p(jo "'jd—lkA)P(ko~~~R~../€d+1).

3 A Minimal Generating Set for the Quadratic
Relations

We are now ready to define a minimal generating set S for the set QR of
nontrivial quadratic relations (modulo identical relations).

Holding for 3 < m < (d+2) we define Q Ry, to be the set of m-term quadratic
relations (again modulo identical relations) and we take Sy, to be the (possibly
empty) set of pairs (j, k) = (13, 1k) such that i J, k are strictly increasing pairwise
disjoint sequences with #7I = (d—m+2), #J (m —2) and #A = m. When
m = 3 we also require Jk to be strictly increasing, that is we require the term
Jo OfJ to be strictly less than each term of k.

Then S = Ud+2 Sm. We will show that S is in bijective correspondence

m=3

with QR via the map g : S — QR given by

d+1
9G.X%) = > (=1 p(Go--.da—1kx)p(ko.. ... kag1).
A=0

Since #(K —J) = #f{ > 3 for all (j,k) € S it folllows from Lemma 6 that

g is well-defined. It remains to show that ¢ is a bijection.



Lemma 8. ¢ s onto.

Proof. Suppose @ is an m-term quadratic relation. We have (j', k) such
that ¢(j', k') = @. (Note that (§',k’) is not necessarily in S.)

Let 1 be strictly increasing with I = J' N K’. Using Lemma 6, we see
that #£(K' — J') = m so that #I = #(J' N K') = (d — m + 2). In addition,
#(J - K= d— (d m+2)=(m-—2).

Ifm>3let] J, k be strictly increasing with J = (J'—K') and K= (K'=J").
Then (j, k) = (13, 1k) is in Sy, and is a rearrangement of (j', k’). Hence g(j, k) =
(0" K)=@. o

If m = 3 let jk = jokokiks be strictly increasing with JUK = (JJUK')—I.
Then (j, k) = (i}, 1E) is in S3 and by Lemma 7 we see that ¢(j, k) = Q. |
Lemma 9. ¢ is one-to-one.

Proof.  Take (j,k) = (i}, 1E) and (j',k') = (1J 1’k’) in S with (j,k) #
(', k'). We want to show that ¢(j, k) # ¢(3', k').

If j,k) € Siy and (j', k') € S; with m # ¢ then ¢(j, k) has m terms while
¢(3’, k') has ¢ terms. Whence ¢(j, k) # ¢g(j', k') and we are done. Thus assume
both (j, k) and (j', k') are in Sy,.

Define h = jUuk and b/ = J Uk’. Since h = h’, i =17 and:‘i'::i7 implies
(j,k) = (j', k') there are three cases.

Case I.h #h'. Then we have hg € H with hg ¢ H'. In this case hg occurs
in each term of ¢(j, k) but in no term of ¢(j', k’): if hg € J then hg occurs in
p(Jo...Ja—1kr) of p(jo...jd_lkk)p(ko...a...kd_kl) for/sach A if hg € K — J then
hg occurs in P(j0~~~jj\—1/€>\) of p(jo...jd_lkk)p(ko...kk;;kd_H) when ky = hg and
hg oceurs in p(ko...kx...kay1) of p(jo...Ja—1kr)p(ko...kx.. .kay1) when kx # hg.

Cask I1. 1 # 1. By Case I we assume h =h'. Since 0 <A < (d—m+2)
gives trivial terms of ¢(j, k), ¢(3', k') we also assume (d —m+2) <A < (d+1).

We have ig € I but ig ¢ I’. We claim that ig occurs in both p(1jg_m+2...Ja—1kx)
and p(ikd_m+2...a...kd+1) of p(ija—m+2.--Ja—1kr)p(ika— m+2...a...kd+1) for each
A but in only one of p(i'j)_,, o--dq_1 k%) and p(i'k)_, 5. * Aokl ) ifig €
J'—K' = J' then ig oceurs in p(i'jy_,,45---Jg_ k%) but not in p(i /kél—m-I—Z"'z;"'kél-l—l)
for all A; otherwise, ig € K'—J' = K’ so that ig occurs in either p(i'j;_,, 4o J5_ 1 K})
or p(i’kél_m_l_z...a...kél_l_l) but not in both.

We note that if m = 3 we are done since h = h’ and i = ¥ implies] = j7
when (j, k), (', k') are in S3. Otherwise, we continue.

Casg 111 3 + :]7 (Assume h = h' and 1 = i'.) We will show that a factor
p(j/o.../jd_lkA) of a term p(jo...jd_lkk)p(ko...a...kd_kl) of ¢(j, k) never occurs in
93’ k).

( Sin)ce the terms of g(j, k) and g(J k') are unaltered by rearrangements of
(G, k) = (i}, 1E) and (j', k') = (1J 1’k’) we can assume thatJ = Jd—m+2---Jd—1, k=
ki—m42...kqgy1 and :]7 = jd_m+2...jd_1,k = kd_m+2 kd+1 are ordered as fol-



lows:
Jad—m+2-Ja—-1 = kél_m+2...kg_1 =@gnk’)—
Jada—1 = Jhdhy=(GNJH —i
ki—m2.-ka-1= Jo_mya--Jo_1 = (kNJ') —
ko kar1 = k.. ktl+1 (kNnk’)—1i

We note that (d —m+ 2) < a < d.
Thus we get

9G. k) = 2550 (D p(Ejacmso--am1ka)p(ko..ox. kasp)
_ d+1 CNAL (S . . -
= EA:d—m+2 ( 1) p(l]d_m+2...jd_lk)\)p(lkd_m+2...k‘)\...kd+1)

= 5 T s (CDD(Gacmaz . dac 1kn)p(ikdm 2. Fore Koz tka.. kap1)
0 (1) p(Ja s da—1k)p(kacmao- ko ika- k. kay1)

= EA dd m-|—2( ) plik;_ ma2 k/a—lj&~~~j£l—1j$\)p(ij£l—m+2 e J& 1kg - ktl+1)
1 . K ..
+E i (_ ) plik;_ ma2 koz—1j:)z"'jtl—1k/)\)p(ljtl—m+2 Jo—1ke- k/ ktl+1)

Since
. d .. . —
93 K) = D (1 Pl g )Pk B i)

d+1 .. —
:Ekid—m+2 (_1)/\P(1321—m+2 Ja_ 1k )p(iky_ ma2 k/~~~ktl+1)

there are two possibilites.

If @ < d then any factor p(ik)_,, »...ko_1j4---J5_1k3) from the second sum
in ¢(j, k) contains at least two (distinct) terms kﬁ, k., of k. yo kg =k and
at least one term ji of ji_, L o...j5_, IJ . Le. there is a factor in ¢(j, k) which
never occurs in g(j’, k').

If @ = d then one of the factors p(ik},_,,  5...kj_,7}) from the first sum in

¢(J, k) contains at least two terms ki, by of ky_pyo-kgpy = k’ and at least one
term jj Of_]d_m_l_z..._]d_l IJ .
Lemmas 8 and 9 yield the following main result.

Theorem 10. S is minimal generating set for QR. That s, g : S — QR
is a bijection. And in fact more is true: for 3 < m < (d+ 2) we have that
gls,. : Sm — QR is bijective so thal Sy, is a minimal generating set for QR,,

As an application of Theorem 10, we count the quadratic relations.

Corollary 11. #QR =

(2 (2D -2 () (20 ()



where(i):Ozfr>q.

Proof. If for each S,;, we pick iU]U k= JUKk first, i = jNk next and]last
(so that k = jUk — (1U}j)), we have

n+1 d+3
#55 = <d—|—3> <d—1>

_[(n+1 d+m 2m — 2
#Sm_<d+m> <d—m—|—2>< m >
d+2

#QR=#S=#5+ Y #Sn.

m=4

and

for m > 3. Thus,

4 The Linear Independence of the Quadratic Re-
lations

In general, the quadratic relations are not linearly independent. The following
example provides an illustration. (Recall that we denote the Grassman Manifold
of d-planes in projective n-space by Gg,.)

Example 12. Linear dependence among the 4-term quadratic relations defining

Gos:

[p(012)p(345) — p(013)p(245) + p(014)p(235) — p(015)p(234)]
—[=p(012)p(345) — p(023)p(145) + p(024)p(135) — p(025)p(134)]
+[=p(013)p(245) + p(023)p(145) + p(034)p(125) — p(035)p(124)]
+[—p(014)p(235) + p(024)p(135) — p(034)p(125) — p(045)p(123)]
—[—p(015)p(234) + p(025)p(134) — p(035)p(124) + p(045)p(123)]

+2[p(045)p(123) — p(145)p(023) + p(245)p(013) — p(345)p(012)] = 0.

There are, of course, certain subsets of the quadratic relations which are
linearly independent.

Lemma 13. QRs3 forms a linearly independent set.

Proof. We show in fact that every term in each quadratic relation ) € QQ R3
is distinct. The claim follows.



Take @ € QRs generated uniquely (using Theorem 10) by (j,k) € Ss.

—

Choose a term T = p(jo...Ja—1ka)p(ko...kg...kgy1) of Q. Consider any other
quadratic relation P € @Rz generated uniquely by (j',k’) € S3 and choose a
term V = p(j(’)...jé_lk%)p(ké...@...kél_l_l) of P. Since P and @) are not identical
(P # £Q) we see that (j, k) # (§/,k’). Thus 7" # V using Cases I and IT of

Lemma 9 and we are done.

We also have the following “near” linear independence among the quadratic
relations.

Lemma 14. An m-term quadratic relation (Q cannot be expressed as a linear
combination of q-term relations when m # q.

Proof. Take an m-term quadratic relation @ generated uniquely by (j, k) €
Sm. Similarly take any g-term relation P generated uniquely by (j', k') € S,.

Let h=jUk and h' = jUKk'. Then #H = (d+ m) and #H' = (d + q).
Since m # ¢ we see that #H # #H' so that h # h'. Using Case I of Lemma 9

we see that no term of ) appears in P.
As a special case of Lemma 14 we have one last notable result.

Theorem 15. No gquadratic relation with more than three terms can be ex-
pressed as a linear combination of three-term relations.

And finally, in consideration of the above, we have

Conjecture 16.

d+2
dim(span QR) = #QRs + Z <c7ll—|——|—nll> <di—;nj_ 2> (2m — 3).
m=4

5 Concluding Examples

We conclude our discussion of the quadratic relations which define the Grassman
Manifold via two minor applications of the results from Sections 3 and 4.
Applying Theorem 10 we see that

Example 17. The quadratic relations

p(012)p(034) — p(013)p(024) + p(014)p(023) = 0
—p(012)p(134) + p(013)p(124) — p(014)p(123) = 0
p(012)p(234) — p(023)p(124) 4 p(024)p(123) = 0
—p(013)p(234) + p(023)p(134) — p(034)p(123) = 0

p(014)p(234) — p(024)p(134) + p(034)p(124) = 0

10



completely define G 4.

Applying Lemma 13 we have
Example 18. The quadratic relations defining Gy, are linearly independent
for alln. This is true because the quadratic relations defining Gy ,, are all three-
term relations. (This also holds for Gp_s,.)
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